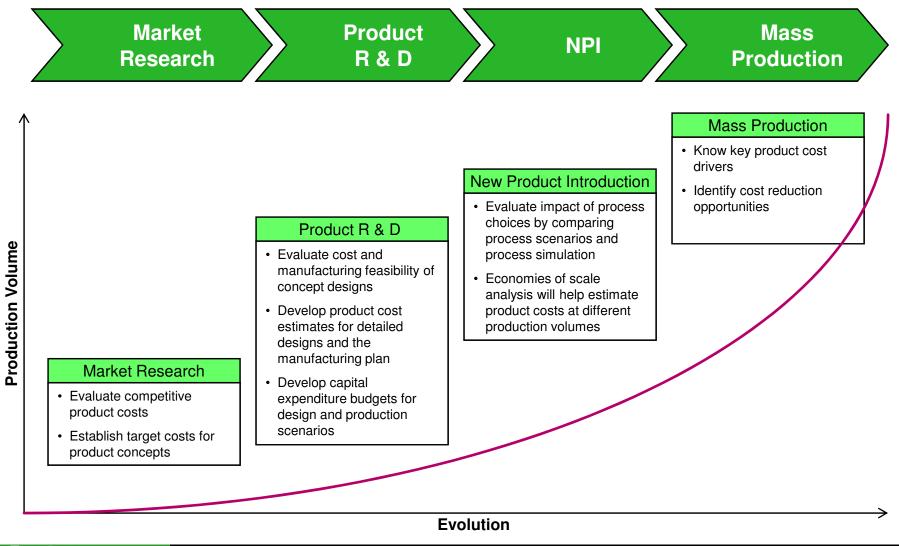
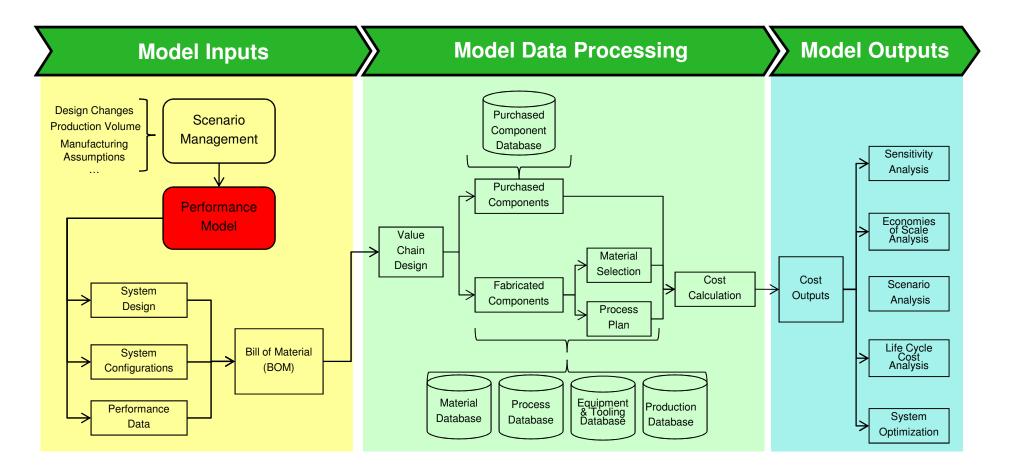
	ysis of Fuel Cell Plug-in Hybrid nd Full Battery Electric Vehicle
	2012 Fuel Cell Seminar Yong Yang
November, 2012	Austin Power Engineering LLC 2310 W 9 th ST Unit 1 Austin, TX 78703 USA www.AUSTINPOWERENG.com
	© 2012 Austin Power Engineering LLC

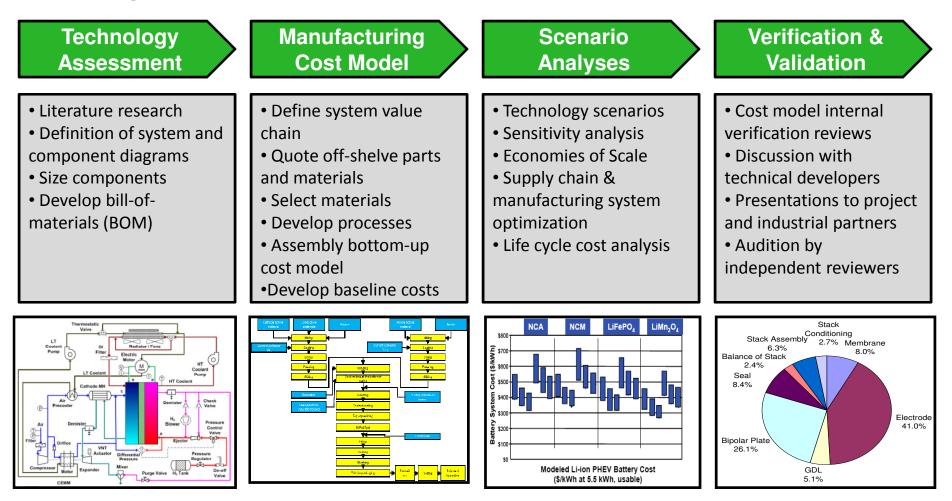

Objective

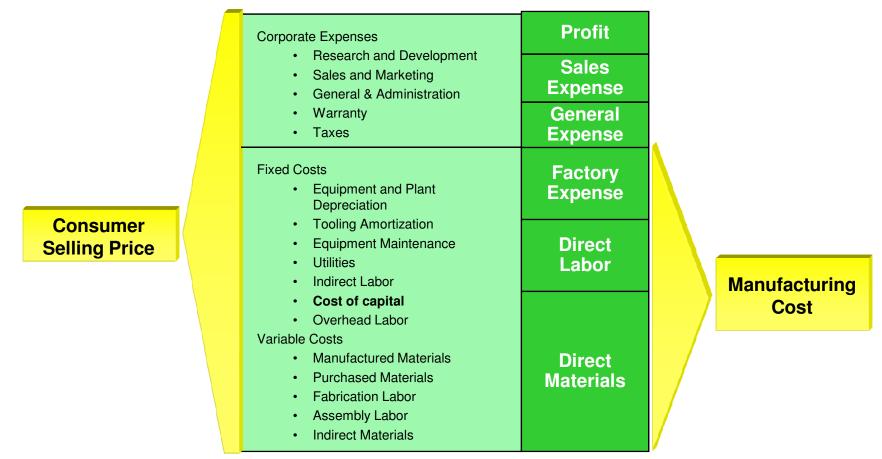
The objective was to assess the cost implications of PEM fuel cell plug-in hybrid and full battery electric middle-size passenger vehicles using current technology at mass production volume (500,000 vehicles per year).

Project Objective	Contents	Results	
PEM fuel cell /Lithium-ion battery hybrid power chain cost analysis	 65kWe PEM fuel cell system 5.6kg usable compressed H2 tank 16kWh lithium-ion battery pack 	 Cost of fuel cell, on-board hydrogen storage, and lithium-ion battery Total cost of ownership of 	
Full electric /lithium-ion battery power chain cost analysis	•78kWh lithium-ion battery pack	 Iotal cost of ownership of fuel cell plug-in hybrid and full battery electric vehicles Identification of factors with significant impact on 	
Total cost of ownership (TCO) analysis of fuel cell hybrid and full electric vehicles	 Fuel cell hybrid vehicle TCO Full electric vehicle TCO 3-year, 5-year, 10-year, and 15- year TCO 	power chain costs • Identification of areas where more research could lead to significant reductions in power chain cost	


Total costs of ownership for mid-size passenger vehicles using PEM fuel cell hybrid and full electric power chains were evaluated.

A technical cost model can be applied to the product's entire life cycle.




Combining performance and cost models will easily generate cost results, even when varying the design inputs.

This approach has been used successfully for estimating the cost of various technologies for commercial clients and the DOE.

Austin Power Engineering's manufacturing cost models can be used to determine a fully loaded selling price to consumers at high or low volumes.

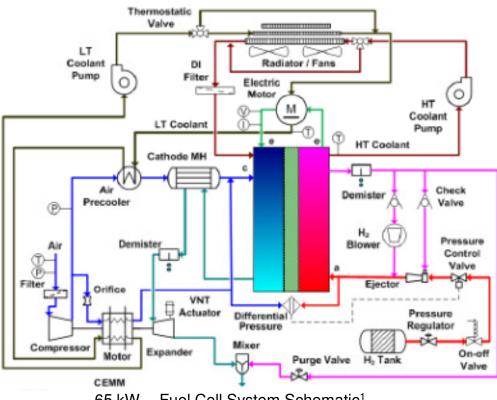
We assume 100% financing with an annual discount rate of 10%, a 10-year equipment life, and a 25-year building life.

The bottom-up cost analysis included the PEM fuel cell system, compressed hydrogen storage tank, and lithium-ion battery packs.

Specification	PEMFC Plug Hybrid Vehicle	Full Electric Vehicle
Glider	Middle size passenger vehicle	Middle size passenger vehicle
Fuel cell system	65 kWe Net PEM fuel cell system	N/A
Hydrogen tank	5.6 Kg usable H2	N/A
Battery pack	16kWh total energy Lithium-ion battery pack (~40 miles w/o FC)	78kWh total energy lithium-ion battery pack
Traction motor	120 kW AC	120 kW AC
Power electronics	 Battery charger Main inverter DC/DC converter Auxiliary inverter, etc 	 Battery charger Main inverter DC/DC converter Auxiliary inverter, etc
Range	350 miles	200miles

Power electronics and traction motor manufacturing cost will be evaluated later.

* Include battery charger, main inverter, DC/DC converter and auxiliary inverter, etc.


1. R. K. Ahluwalia, and X. Wang, "Direct hydrogen fuel cell systems for hybrid vehicles," *Journal of Power Sources* 139 (2005): 152-164. 2. P. Bubna, D. Brunner, S. G. Advani, and A. K. Prasad, "Prediction-based optimal power management in a fuel cell/battery plug-in hybrid vehicle," *Journal of Power Sources* 195 (2010): 6699-6708.

3. L. M. Fernandez, P. Garcia, C. A. Garcia, and F. Jurado, "Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway," *Energy Conversion and Management* 52 (2011): 2183-2192.

4. J. Bernard, M. Hofer, U. Hannesen, A. Toth, A. Tsukada, F. Buchi, and P. Dietrich, "Fuel cell/battery passive hybrid power source for electric powertrains," *Journal of Power Sources*.

The 65 kW_{net} direct hydrogen PEM fuel cell system configuration was referenced in previous and current studies conducted by Argon National Laboratory (ANL).

65 kW_{net} Fuel Cell System Schematic¹

 R. K. Ahluwalia, and X. Wang, "Direct hydrogen fuel cell systems for hybrid vehicles," *Journal of Power Sources* 139 (2005): 152-164.
 R. K. Ahluwalia, X. Wang, and R. Kumar, "Fuel cells systems analysis," 2011 DOE Hydrogen Program Review, Washington DC, May 9-13, 2011.

Key Parameters Stack • 3M NSTFC MEA • 20 μm supported membrane • 0.05 (a)/0.1 (c) mg/cm² Pt • 75 °C, 1.5 atm • Metal bipolar plates • Non-woven carbon fiber GDL

Air Management

- CEM module
- Air-cooled motor / Air-foil bearing

Water Management

- Cathode planar membrane humidifier with pre-cooler
- No anode humidifier

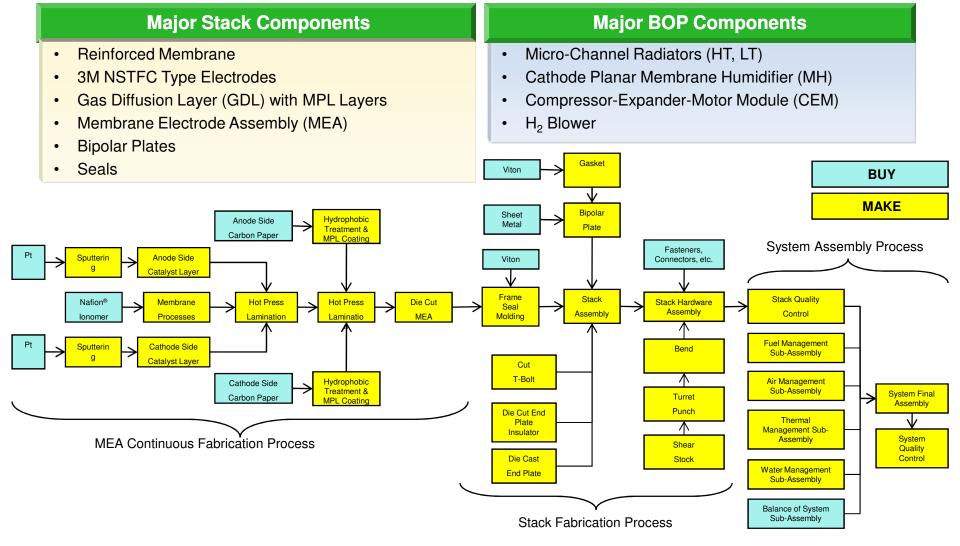
Thermal Management

Micro-channel HX

Fuel Management

Parallel ejector / pump hybrid

Based on ANL's stack performance analysis, we made the following system and material assumptions for the cost estimation.


Stack Components	Unit	Current System	Comments
Production volume	systems/year	500,000	High volume
Stacks' net power	kW	65	
Stacks' gross power	kW	72	
Stacks' gross power density	mW/cm ²	930	
Max. stack temp.	Degree C	90	
Platinum price	\$/tr.oz.	\$1,475	This year average
Pt loading	mg/cm ²	0.15	
Membrane type		Reinforced Nafion®	
Membrane thickness	micro meter	20	
GDL layer		None-woven carbon	
GDE layer		paper	
GDL thickness	micro meter	185	@50 kPa pressure
MPL layer thickness	micro meter	40	
Bipolar plate type		76Fe-20Cr-4V with nitridation surface treatment	
Bipolar plate base material Thickness	micro meter	100	
Seal material		Viton [®]	

Pt price was \$1,475/tr.oz. for the baseline, which was the average Pt price this year.

PEMFC Plug Hybrid Vehicle 65 kW_{net} PEM Fuel Cell System *Manufacturing Strategy*

We used a vertically integrated approach to determine the mass production volume manufacturing cost for major stack and BOP components.

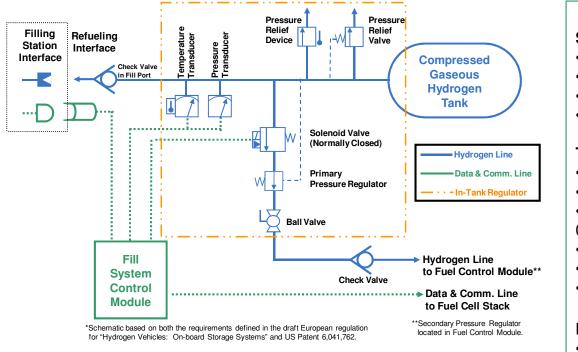
A 65 kW_{net} PEM fuel cell stack cost 26/kW. Electrodes, bipolar plates, and membranes were the top three cost drivers.

Stack	omponents Manufacturing Comments		65 kW _{net} PEM Fuel Cell Stack Cost (\$25.7/kW _{net})
Components	Cost (\$/kW)		Stack Conditioning Stack Assembly 2 5%
Membrane	2.14	PFSA ionomer (\$80/lb)	6.1% Membrane Balance of Stack
Electrodes	10.77	3M NSTFC	2.5%
GDL	1.23	No-Woven carbon paper	Seal 8.2%
Seals	2.10	Viton	Electrode
Bipolar plates	6.63	Nitrided metallic plates	Bipolar Plate 41.9%
Balance of stack	0.64	Manifold, end plates, current collectors, insulators, tie bolts, etc.	25.8% GDL 4.8%
Stack assembly ¹	1.58	Robotic assembly	
Stack conditioning	0.65	2 hours	
Total stack ²	25.7		

1. Stack assembly cost category included MEA assembly and stack QC; QC included visual inspection, and leak tests for fuel, air, and coolant loops.

2. Results may not appear to calculate due to rounding of the component cost results.

PEMFC Plug Hybrid Vehicle65 kWnet PEM Fuel Cell SystemPreliminary Cost ResultsA 65 kWnetPEM fuel cell system cost \$62/kW. Stack, air management, andthermal management were the top three cost drivers.


System	2012 System Manufacturing Comments		65 kW _{net} PEM Fuel Cell System Cost (\$4,030/system)
Components	Cost (\$/kW)		System Assembly 7.5%
Stack	25.7		Balance of System 7.7%
Water management	1.8	Cathode side humidifier, etc.	Fuel Management 9.4%
Thermal management	6.5	HX, coolant pump, etc.	
Fuel management	5.8	H2 pump, etc.	
Air management	12.7	CEM, etc.	Air Management 20.5% Water
Balance of system	4.8	Sensors, controls, wire harness, piping, etc.	Management Thermal 3.0% Management 10.5%
System assembly	4.6		
Total system ^{1, 2}	62.0]

1. Assumed 15% markup to the automotive OEM for BOP components

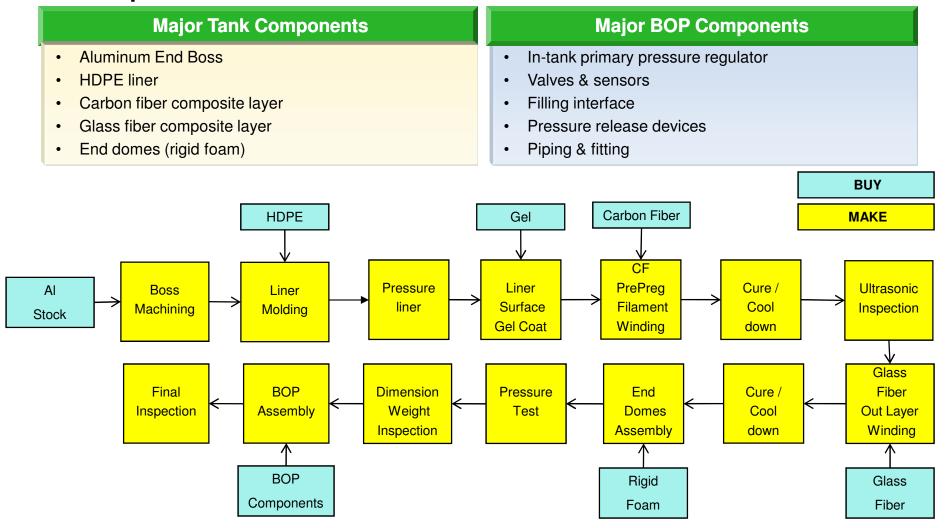
2. Results may not appear to calculate due to rounding of the component cost results.

The 65 kW_{net} direct hydrogen PEM fuel cell system cost \$4,030 at the mass production volume.

The 5,000 PSI type IV compressed hydrogen tank design was referenced in studies TIAX conducted on hydrogen storage^{1, 2}.

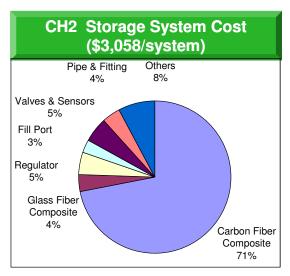
Compressed Hydrogen Storage System Schematic^{1, 2}

- 1. E. Carlson and Y. Yang, "Compressed hydrogen and PEM fuel cell system," Fuel cell tech team freedomCar, Detroit, MI, October 20, 2004.
- S. Lasher and Y. Yang, "Cost analysis of hydrogen storage systems Compressed Hydrogen On-Board Assessment – Previous Results and Updates for FreedomCAR Tech Team", January , 2007


Key Parameters System Pressure: 5.000 PSI Single Tank Design • Usable H2: 5.6 kg Safety Factor: 2.25 Tank Carbon Fiber: Toray T700S Carbon Fiber Cost: \$12/lbs Carbon Fiber / Resin Ratio: 0.68: 0.32 (weight) Translational Strength Factor: 81.5% Fiber Process: Filament Winding • Liner: HDPE **Pressure Regulator** In-tank

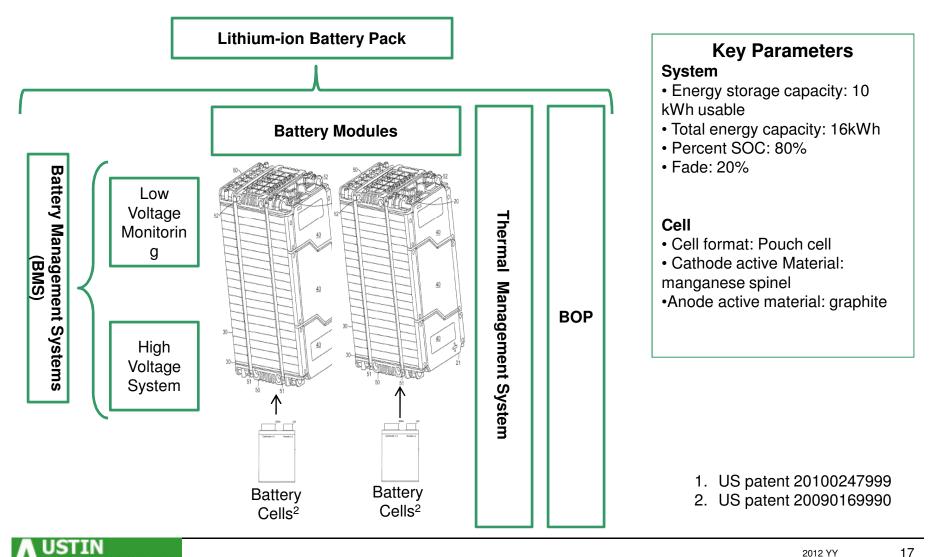
The single tank design had a usable hydrogen storage capacity of 5.6 kg.

Assumptions for the hydrogen storage tank design were based on the literature review and third-party discussions.


Stack Components	Unit	Current System	Comments
Production volume	systems/year	500,000	High Volume
Usable hydrogen	Kg	5.6	
Recoverable H2 in the tank		IV	With HDPE liner
Tank type		IV	With HDPE liner
Tank pressure	PSI	5,000	
# of tanks	Per System	1	
Safety factor		2.25	
Tank length/diameter ratio		3:1	
Carbon fiber type		Toray T700S	
Carbon fiber cost	\$/lbs	12	
Carbon fiber vs. resin ratio		0.68:0.32	Weight
Carbon fiber translational		81.5%	
Strength factor		01.576	
Damage resistant outer layer material		S-Glass	Could be replaced by cheaper E-glass
S-Glass cost	\$/lbs	7	
Impact resistant end dome material		Rigid Foam	
Rigid foam cost	\$/kg	3	
Liner material		HDPE	
Liner thickness	Inch	1/4	
In tank regulator cost	\$/unit	150	

PEMFC Plug Hybrid Vehicle On-board Compressed H2 Storage System *Manufacturing Strategy* A vertically integrated manufacturing process was assumed for the tank and BOP components.

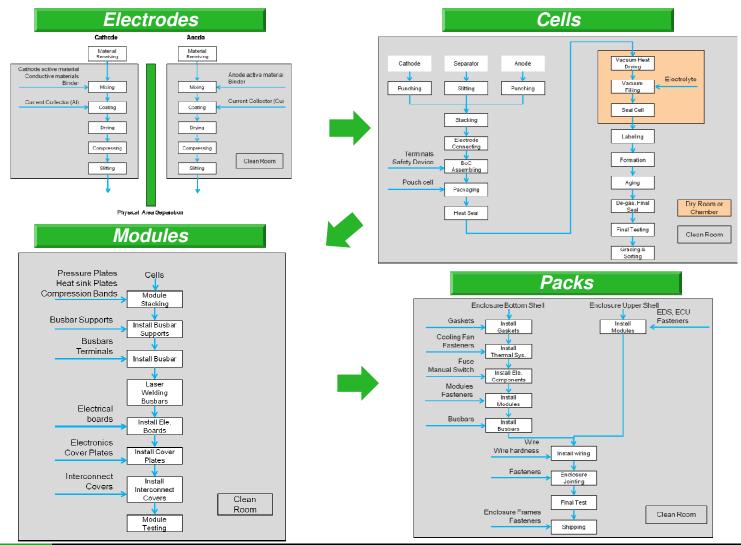
PEMFC Plug Hybrid Vehicle On-board Compressed H2 Storage System *Preliminary Cost Results* In the 5,000 PSI baseline system, the carbon fiber composite layer was the dominant cost driver.


System Components	2012 System Manufacturing Cost (\$/kWh)	Comments
Hydrogen	0.09	5.9 kg H2
Pressure Tank	12.69	
- Liner	- 0.09	
- Carbon fiber layer	- 11.79	Pre-preg carbon fiber cost \$36/kg
- Glass fiber layer	- 0.59	\$50/Kg
- Foam	- 0.22	
Primary pressure regulator	0.80	In-tank design
Valves & sensors	0.86	4 valves, 1 temperature sensor, 1 pressure sensor
Fill port	0.43	
Fittings, piping, safety device, etc.	0.64	Pressure relive valve, burst valve, etc.
Assembly & inspection	0.88	Including pressure test
Total system ²	16.39	

The 5,000 PSI compressed hydrogen storage tank system cost \$3,058 at the mass production volume.

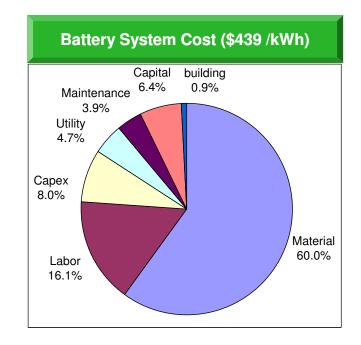
OWER ENGINEERING

A lithium-ion battery pack was designed to drive a middle-sized vehicle approximately 40 miles without using the fuel cell.



The assumptions for the 16kWh lithium-ion battery pack design were based on the literature review and third-party discussions.

Stack Components	Unit	Current System	Comments
Production volume	systems/year	500,000	
Gross Energy Storage Capacity	kWh	16	Applied SOC and Fade
Usable Energy Storage Capacity	kWh	10	
Percentage SOC	%	80	
Fade in Life	%	20	
Drive All Electric Range	Mile	~40	
Cell Type		Pouch cell	20 Ah / 65W
Anode Active Material		Graphite	(MCMB 6-28)
Cathode Active Material		LiMn ₂ O ₄	
Electrolyte Material		LiPF ₆	
Anode Current Collector Material		Cu	
Cathode Current Collector Material		AI	
Separator		Tri-layer PP/PE/PP	


A vertically integrated manufacturing process was assumed for the four-level battery pack fabrication: electrode, cell, module, and pack.

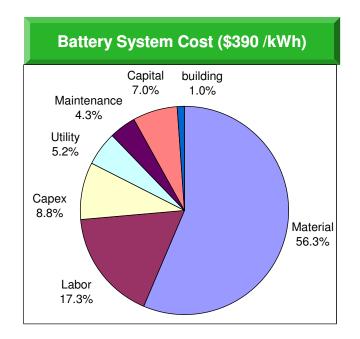
AUSTIN POWER ENGINEERING

The lithium-ion battery system cost \$439 /kWh. Of that, the material costs were approximately 60% and the process costs were approximately 40%.

Cost Category	Cell Cost (\$/cell)	Module Cost (\$/module)	Pack Cost (\$/pack)
Material	6.44	277.36	2,699
Labor	1.51	77.25	724
Equipment & tooling	0.79	25.96	210
Utility	0.65	21.74	176
Maintenance	1.33	44.68	361
Capital cost	1.12	35.95	288
Building	0.14	4.84	40
Total	11.98	487.79	4,497
Total (\$/kWh)*	288	366	439

* Based on usable energy (16 kWh x 0.8 x0.8 = 10 /kWh)

The 16 kWh lithium-ion battery system cost \$4,497 per pack at the mass production volume.


Assumptions for the 78kWh lithium-ion battery pack design were based on the literature review and third-party discussions.

Stack Components	Unit	Current System	Comments
Production volume	systems/year	500,000	
Gross Energy Storage Capacity	kWh	78	Applied SOC and Fade
Usable Energy Storage Capacity	kWh	50	
Percentage SOC	%	80	
Fade in Life	%	20	
Drive All Electric Range	Mile	~200	
Cell Type		Pouch cell	20 Ah / 65W
Anode Active Material		Graphite	(MCMB 6-28)
Cathode Active Material		LiMn ₂ O ₄	
Electrolyte Material		LiPF ₆	
Anode Current Collector Material		Cu	
Cathode Current Collector Material		AI	
Separator		Tri-layer PP/PE/PP	

The lithium-ion battery system cost \$390 /kWh. Of that, the material costs were approximately 56% and the process costs were approximately 44%.

Cost Category	Cell Cost (\$/cell)	Module Cost (\$/module)	Pack Cost (\$/pack)
Material	5.79	250.25	10,958
Labor	1.48	76.09	3,375
Equipment & tooling	0.79	25.90	1,017
Utility	0.63	21.39	841
Maintenance	1.30	43.90	1,722
Capital cost	1.10	35.06	1367
Building	0.14	4.79	190
Total	11.23	457.38	19,470
Total (\$/kWh)*	270	344	390

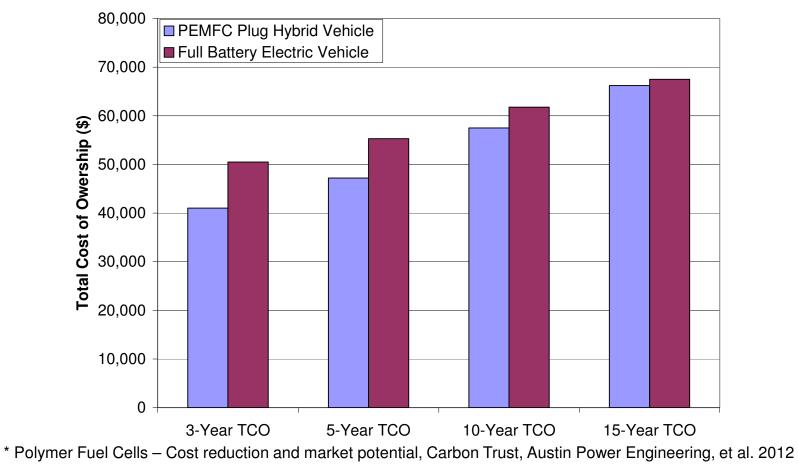
* Based on usable energy (78 kWh x 0.8 x0.8 = 50 /kWh)

The 78 kWh lithium-ion battery system cost \$19,470 per pack at the mass production volume.

PEM fuel cell plug-in hybrid vehicle purchase price was \$30,113 and full battery electric vehicle purchase price was \$41,625 at the mass production volume.

Component Category		PEMFC Plug Hybrid (\$/unit)	Full Battery Electric (\$/unit)	Comments
Glider	Glider	7,000	7,000	Mid-size passenger vehicle
Power Chain	PEMFC	4,030	N/A	Bottom-up costing
	H2 storage	3,058	N/A	Bottom-up costing
	Battery system	4,497	19,470	Bottom-up costing
	Traction motor ¹	1,200	1,200	Motor + controller + transmission
	Power electric ¹	840	840	Battery charger, main inverter, DC/DC converter, auxiliary inverter, etc
	Power chain sub- total	13,625	22,760	
Total vehicle manufacturing cost		20,625	28,510	
Markup ²		46%	46%	Corporation cost & profit, dealer cost, shipping cost, tax
Purchase price for consumer		30,113	41,625	

1. The DOE advanced power electronics & electric motors (APEEM) team reported the power electronics cost \$7/kW and the motor cost \$10/kW in 2012.


1. Automobile Industry Retail Price Equivalent and Indirect Cost Multipliers, EPA, 2009

Total cost of ownership (TCO) included the purchase price, financing cost, fuel cost, maintenance cost, and salvage value.

Purchase Financing Fuel Maintenance Salvage TCO = + + + Price Cost Cost* Cost value **PEMFC Plug Full Battery PEMFC Plug Full Battery 3 Year TCO 5 Year TCO Hybrid Vehicle Electric Vehicle Hybrid Vehicle Electric Vehicle Purchase Price** 30,113 41,625 **Purchase Price** 30,113 41,625 **Financing cost Financing cost** 2.780 3.842 4.040 5.584 Fuel cost 4.376 1.055 **Fuel cost** 6.956 1.677 Maintenance cost 3,892 4.135 Maintenance cost 6,187 6,573 Salvage Value -131 Salvage Value -163 -180 -118 TCO TCO 41.030 50.476 47.178 55.295 **PEMFC Plug PEMFC Plug Full Battery Full Battery** 10 Year TCO 15 Year TCO **Hybrid Vehicle Electric Vehicle Hybrid Vehicle Electric Vehicle Purchase Price** 30.113 41,625 **Purchase Price** 30,113 41,625 **Financing cost** 5.584 **Financing cost** 4.040 5.584 4.040 Fuel cost 12,405 2,990 16.675 4.018 Fuel cost Maintenance cost 16.362 11.033 11,721 Maintenance cost 15,437 Salvage Value -91 -126 Salvage Value -71 -97 TCO 57.500 61.793 TCO 66.194 67.491

* Included property tax and insurance cost

PEMFC plug-in hybrid vehicle had a TCO advantage compared to a full battery electric vehicle, especially in the first 3~5 years.

Consumers like to consider annual costs in a limited time when they make a purchase decision which is most likely in 3~5 years instead of 10~15 years*.

The due diligence was preliminary. The following actions are needed to improve the current work:

- More analysis items, such as power electronics, the traction motor, system modeling, and sensitivity
- Feedback from system integrators
- Communication with component suppliers and equipment suppliers
- Possible funding opportunities for the extended work

Thank You!

